The multiverse (or meta-universe) is a hypothetical group of multiple separate universes including the universe in which humans live. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, the physical laws and the constants that describe them. The different universes within the multiverse are called the "parallel universes", "other universes" or "alternative universes".
Video Multiverse
History of the concept
In his book, Opticks (1704), Isaac Newton suggested the idea of a multiverse:
And since Space is divisible in infinitum, and Matter is not necessarily in all places, it may be also allow'd that God is able to create Particles of Matter of several Sizes and Figures, and in several Proportions to Space, and perhaps of different Densities and Forces, and thereby to vary the Laws of Nature, and make Worlds of several sorts in several Parts of the Universe. At least, I see nothing of Contradiction in all this.
In Dublin in 1952, Erwin Schrödinger gave a lecture in which he jocularly warned his audience that what he was about to say might "seem lunatic". He said that when his equations seemed to describe several different histories, these were "not alternatives, but all really happen simultaneously".
The American philosopher and psychologist William James used the term "multiverse" in 1895, but in a different context.
Maps Multiverse
Brief explanation
The structure of the multiverse, the nature of each universe within it, and the relationships among these universes vary from one multiverse hypothesis to another.
Multiple universes have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology, and literature, particularly in science fiction and fantasy. In these contexts, parallel universes are also called "alternate universes", "quantum universes", "interpenetrating dimensions", "parallel dimensions", "parallel worlds", "parallel realities", "quantum realities", "alternate realities", "alternate timelines", "alternate dimensions", and "dimensional planes".
The physics community continues to debate the multiverse hypotheses. Prominent physicists are divided in opinion about whether any other universes exist.
Some physicists say the multiverse is not a legitimate topic of scientific inquiry. Concerns have been raised about whether attempts to exempt the multiverse from experimental verification could erode public confidence in science and ultimately damage the study of fundamental physics. Some have argued that the multiverse is a philosophical rather than a scientific hypothesis because it cannot be falsified. The ability to disprove a theory by means of scientific experiment has always been part of the accepted scientific method. Paul Steinhardt has famously argued that no experiment can rule out a theory if the theory provides for all possible outcomes.
In 2007, Nobel laureate Steven Weinberg suggested that if the multiverse existed, "the hope of finding a rational explanation for the precise values of quark masses and other constants of the standard model that we observe in our Big Bang is doomed, for their values would be an accident of the particular part of the multiverse in which we live."
Search for evidence
Around 2010, scientists such as Stephen M. Feeney analyzed Wilkinson Microwave Anisotropy Probe (WMAP) data and claimed to find evidence suggesting that our universe collided with other (parallel) universes in the distant past. However, a more thorough analysis of data from the WMAP and from the Planck satellite, which has a resolution 3 times higher than WMAP, did not reveal any statistically significant evidence of such a bubble universe collision. In addition, there was no evidence of any gravitational pull of other universes on ours.
Proponents and skeptics
Proponents of one or more of the multiverse hypotheses include Brian Greene, Max Tegmark, Alan Guth, Andrei Linde, Michio Kaku, David Deutsch, Leonard Susskind, Alexander Vilenkin, Yasunori Nomura, Raj Pathria, Laura Mersini-Houghton, Neil deGrasse Tyson, Lawrence Krauss and Sean Carroll. Stephen Hawking was a proponent.
Scientists who are generally skeptical of the multiverse hypothesis include: Steven Weinberg, David Gross, Paul Steinhardt, Anna Ijjas Abraham Loeb David Spergel Neil Turok, Viatcheslav Mukhanov, Michael S. Turner, Roger Penrose, George Ellis, Joe Silk, Carlo Rovelli, Adam Frank, Marcelo Gleiser, Jim Baggott, and Paul Davies.
Arguments against multiverse theories
In his 2003 New York Times opinion piece, "A Brief History of the Multiverse", the author and cosmologist Paul Davies offered a variety of arguments that multiverse theories are non-scientific:
For a start, how is the existence of the other universes to be tested? To be sure, all cosmologists accept that there are some regions of the universe that lie beyond the reach of our telescopes, but somewhere on the slippery slope between that and the idea that there are an infinite number of universes, credibility reaches a limit. As one slips down that slope, more and more must be accepted on faith, and less and less is open to scientific verification. Extreme multiverse explanations are therefore reminiscent of theological discussions. Indeed, invoking an infinity of unseen universes to explain the unusual features of the one we do see is just as ad hoc as invoking an unseen Creator. The multiverse theory may be dressed up in scientific language, but in essence it requires the same leap of faith.
George Ellis, writing in August 2011, provided a criticism of the multiverse, and pointed out that it is not a traditional scientific theory. He accepts that the multiverse is thought to exist far beyond the cosmological horizon. He emphasized that it is theorized to be so far away that it's unlikely any evidence will ever be found. Ellis also explained that some theorists do not believe the lack of empirical testability falsifiability is a major concern, but he is opposed to that line of thinking:
Many physicists who talk about the multiverse, especially advocates of the string landscape, do not care much about parallel universes per se. For them, objections to the multiverse as a concept are unimportant. Their theories live or die based on internal consistency and, one hopes, eventual laboratory testing.
Ellis says that scientists have proposed the idea of the multiverse as a way of explaining the nature of existence. He points out that it ultimately leaves those questions unresolved because it is a metaphysical issue that cannot be resolved by empirical science. He argues that observational testing is at the core of science and should not be abandoned:
As skeptical as I am, I think the contemplation of the multiverse is an excellent opportunity to reflect on the nature of science and on the ultimate nature of existence: why we are here.... In looking at this concept, we need an open mind, though not too open. It is a delicate path to tread. Parallel universes may or may not exist; the case is unproved. We are going to have to live with that uncertainty. Nothing is wrong with scientifically based philosophical speculation, which is what multiverse proposals are. But we should name it for what it is.
Classification schemes
Max Tegmark and Brian Greene have devised classification schemes for the various theoretical types of multiverses and universes that they might comprise.
Max Tegmark's four levels
Cosmologist Max Tegmark has provided a taxonomy of universes beyond the familiar observable universe. The four levels of Tegmark's classification are arranged such that subsequent levels can be understood to encompass and expand upon previous levels. They are briefly described below.
Level I: An extension of our Universe
A prediction of chaotic inflation is the existence of an infinite ergodic universe, which, being infinite, must contain Hubble volumes realizing all initial conditions.
Accordingly, an infinite universe will contain an infinite number of Hubble volumes, all having the same physical laws and physical constants. In regard to configurations such as the distribution of matter, almost all will differ from our Hubble volume. However, because there are infinitely many, far beyond the cosmological horizon, there will eventually be Hubble volumes with similar, and even identical, configurations. Tegmark estimates that an identical volume to ours should be about 1010115 meters away from us.
Given infinite space, there would, in fact, be an infinite number of Hubble volumes identical to ours in the universe. This follows directly from the cosmological principle, wherein it is assumed that our Hubble volume is not special or unique.
Level II: Universes with different physical constants
In the chaotic inflation theory, which is a variant of the cosmic inflation theory, the multiverse or space as a whole is stretching and will continue doing so forever, but some regions of space stop stretching and form distinct bubbles (like gas pockets in a loaf of rising bread). Such bubbles are embryonic level I multiverses.
Different bubbles may experience different spontaneous symmetry breaking, which results in different properties, such as different physical constants.
Level II also includes John Archibald Wheeler's oscillatory universe theory and Lee Smolin's fecund universes theory.
Level III: Many-worlds interpretation of quantum mechanics
Hugh Everett III's many-worlds interpretation (MWI) is one of several mainstream interpretations of quantum mechanics.
In brief, one aspect of quantum mechanics is that certain observations cannot be predicted absolutely. Instead, there is a range of possible observations, each with a different probability. According to the MWI, each of these possible observations corresponds to a different universe. Suppose a six-sided die is thrown and that the result of the throw corresponds to a quantum mechanics observable. All six possible ways the die can fall correspond to six different universes.
Tegmark argues that a Level III multiverse does not contain more possibilities in the Hubble volume than a Level I or Level II multiverse. In effect, all the different "worlds" created by "splits" in a Level III multiverse with the same physical constants can be found in some Hubble volume in a Level I multiverse. Tegmark writes that, "The only difference between Level I and Level III is where your doppelgängers reside. In Level I they live elsewhere in good old three-dimensional space. In Level III they live on another quantum branch in infinite-dimensional Hilbert space."
Similarly, all Level II bubble universes with different physical constants can, in effect, be found as "worlds" created by "splits" at the moment of spontaneous symmetry breaking in a Level III multiverse. According to Yasunori Nomura, Raphael Bousso, and Leonard Susskind, this is because global spacetime appearing in the (eternally) inflating multiverse is a redundant concept. This implies that the multiverses of Levels I, II, and III are, in fact, the same thing. This hypothesis is referred to as "Multiverse = Quantum Many Worlds".
Related to the many-worlds idea are Richard Feynman's multiple histories interpretation and H. Dieter Zeh's many-minds interpretation.
Level IV: Ultimate ensemble
The ultimate mathematical universe hypothesis is Tegmark's own hypothesis.
This level considers all universes to be equally real which can be described by different mathematical structures.
Tegmark writes:
Abstract mathematics is so general that any Theory Of Everything (TOE) which is definable in purely formal terms (independent of vague human terminology) is also a mathematical structure. For instance, a TOE involving a set of different types of entities (denoted by words, say) and relations between them (denoted by additional words) is nothing but what mathematicians call a set-theoretical model, and one can generally find a formal system that it is a model of.
He argues that this "implies that any conceivable parallel universe theory can be described at Level IV" and "subsumes all other ensembles, therefore brings closure to the hierarchy of multiverses, and there cannot be, say, a Level V."
Jürgen Schmidhuber, however, says that the set of mathematical structures is not even well-defined and that it admits only universe representations describable by constructive mathematics--that is, computer programs.
Schmidhuber explicitly includes universe representations describable by non-halting programs whose output bits converge after finite time, although the convergence time itself may not be predictable by a halting program, due to the undecidability of the halting problem. He also explicitly discusses the more restricted ensemble of quickly computable universes.
Brian Greene's nine types
The American theoretical physicist and string theorist Brian Greene discussed nine types of multiverses:
Quilted
The quilted multiverse works only in an infinite universe. With an infinite amount of space, every possible event will occur an infinite number of times. However, the speed of light prevents us from being aware of these other identical areas.
Inflationary
The inflationary multiverse is composed of various pockets in which inflation fields collapse and form new universes.
Brane
The brane multiverse version postulates that our entire universe exists on a membrane (brane) which floats in a higher dimension or "bulk". In this bulk, there are other membranes with their own universes. These universes can interact with one another, and when they collide, the violence and energy produced is more than enough to give rise to a big bang. The branes float or drift near each other in the bulk, and every few trillion years, attracted by gravity or some other force we do not understand, collide and bang into each other. This repeated contact gives rise to multiple or "cyclic" big bangs. This particular hypothesis falls under the string theory umbrella as it requires extra spatial dimensions.
Cyclic
The cyclic multiverse (via the ekpyrotic scenario) has multiple branes (each a universe) that have collided, causing Big Bangs. The universes bounce back and pass through time until they are pulled back together and again collide, destroying the old contents and creating them anew.
Landscape
The landscape multiverse relies on string theory's Calabi-Yau spaces. Quantum fluctuations drop the shapes to a lower energy level, creating a pocket with a set of laws different from that of the surrounding space.
Quantum
The quantum multiverse creates a new universe when a diversion in events occurs, as in the many-worlds interpretation of quantum mechanics.
Holographic
The holographic multiverse is derived from the theory that the surface area of a space can simulate the volume of the region.
Simulated
The simulated multiverse exists on complex computer systems that simulate entire universes.
Ultimate
The ultimate multiverse contains every mathematically possible universe under different laws of physics.
Cyclic theories
In several theories, there is a series of infinite, self-sustaining cycles (for example, an eternity of Big Bangs, Big Crunches, and/or Big Freezes).
M-theory
A multiverse of a somewhat different kind has been envisaged within string theory and its higher-dimensional extension, M-theory.
These theories require the presence of 10 or 11 spacetime dimensions respectively. The extra 6 or 7 dimensions may either be compactified on a very small scale, or our universe may simply be localized on a dynamical (3+1)-dimensional object, a D3-brane. This opens up the possibility that there are other branes which could support other universes.
Black-hole cosmology
Black-hole cosmology is a cosmological model in which the observable universe is the interior of a black hole existing as one of possibly many universes inside a larger universe. This includes the theory of white holes, which are on the opposite side of space-time.
Anthropic principle
The concept of other universes has been proposed to explain how our own universe appears to be fine-tuned for conscious life as we experience it.
If there were a large (possibly infinite) number of universes, each with possibly different physical laws (or different fundamental physical constants), then some of these universes (even if very few) would have the combination of laws and fundamental parameters that are suitable for the development of matter, astronomical structures, elemental diversity, stars, and planets that can exist long enough for life to emerge and evolve.
The weak anthropic principle could then be applied to conclude that we (as conscious beings) would only exist in one of those few universes that happened to be finely tuned, permitting the existence of life with developed consciousness. Thus, while the probability might be extremely small that any particular universe would have the requisite conditions for life (as we understand life), those conditions do not require intelligent design as an explanation for the conditions in the Universe that promote our existence in it.
An early form of this reasoning is evident in Arthur Schopenhauer's 1844 work "Von der Nichtigkeit und dem Leiden des Lebens", where he argues that our world must be the worst of all possible worlds, because if it were significantly worse in any respect it could not continue to exist.
Occam's razor
Proponents and critics disagree about how to apply Occam's razor. Critics argue that to postulate an almost infinite number of unobservable universes, just to explain our own universe, is contrary to Occam's razor. However, proponents argue that in terms of Kolmogorov complexity the proposed multiverse is simpler than a single idiosyncratic universe.
For example, multiverse proponent Max Tegmark argues:
[A]n entire ensemble is often much simpler than one of its members. This principle can be stated more formally using the notion of algorithmic information content. The algorithmic information content in a number is, roughly speaking, the length of the shortest computer program that will produce that number as output. For example, consider the set of all integers. Which is simpler, the whole set or just one number? Naively, you might think that a single number is simpler, but the entire set can be generated by quite a trivial computer program, whereas a single number can be hugely long. Therefore, the whole set is actually simpler... (Similarly), the higher-level multiverses are simpler. Going from our universe to the Level I multiverse eliminates the need to specify initial conditions, upgrading to Level II eliminates the need to specify physical constants, and the Level IV multiverse eliminates the need to specify anything at all.... A common feature of all four multiverse levels is that the simplest and arguably most elegant theory involves parallel universes by default. To deny the existence of those universes, one needs to complicate the theory by adding experimentally unsupported processes and ad hoc postulates: finite space, wave function collapse and ontological asymmetry. Our judgment therefore comes down to which we find more wasteful and inelegant: many worlds or many words. Perhaps we will gradually get used to the weird ways of our cosmos and find its strangeness to be part of its charm.
Modal realism
Possible worlds are a way of explaining probability and hypothetical statements. Some philosophers, such as David Lewis, believe that all possible worlds exist and that they are just as real as the world we live in (a position known as modal realism).
See also
References
Bibliography
External links
- Interview with Tufts cosmologist Alex Vilenkin on his new book, "Many Worlds in One: The Search for Other Universes" on the podcast and public radio interview program ThoughtCast.
- Joseph Pine II about Multiverse, Presentation at Mobile Monday Amsterdam, 2008
- Multiverse - Radio-discussion on BBC Four with Melvyn Bragg
- What Is The Multiverse? A layman's explanation
Source of the article : Wikipedia